The standard form of linear optimization problems is:
$$ \begin{align*} \underset{x\in \mathbb{R}^n}{\text{maximize}}\qquad& c^{T} x\\ \text{subject to:}\qquad& Ax \le b\\ & x \ge 0 \end{align*} $$
Transformation tricks #
- Conversion between min and max:
$min f(x) = - max(-f(x))$
$Ax >= b$
<=>$-Ax <= -b$
$f(x) = 0$
<=>$f(x) >= 0$
and$f(x) <= 0$
$x \in \mathbb{R} <=> u \ge 0, v \ge 0, x = u - v$
An example #
$$ \begin{align*} \underset{p, q}{\text{minimize}}\qquad& p + q\\ \text{subject to:}\qquad& 5p - 3q = 7\\ & 2p + q \ge 2 \\ & 1 \le q \le 4 \end{align*} $$
Let us transform the above.
First, $p$
is unbounded, so we have $p = u - v, u \ge 0, v \ge 0$
.
The standard form is $x \ge 0$
, but $q$
here does not conform to this format. We split $1 \le q \le 4$
into two parts: $q \ge 1$
and $q \le 4$
. We can use the former one as something like $x \ge 0$
. We can have $w = q + 1$
. Because $q \ge 1$
, so we have $w \ge 0$
; because $q \le 4$
, we have $w \le 3$
.
Because the constraints of the standard form are like $Ax \le b$
, so we need to change the constraints as well. According to the conversion tricks, we can have:
$$ 5p - 3q \le 7 \\ 5p - 3q \ge 7 \\ -2p - q \le -2 $$
Because
$$ p = u - v \\ q = w + 1 $$
we have
$$ 5u - 5v - 3w \le 10 \\ -5u + 5v + 3w \le -10 \\ -2u + 2v - w \le -1 $$
Do not forget that we have another constraint:
$$ w \le 3 $$
Solution #
Therefore, the standard form of the example linear problem is:
$$ \begin{align*} \underset{u, v, w}{\text{maximize}}\qquad& -u + v - w - 1\\ \text{subject to:}\qquad& 5u - 5v - 3w \le 10 \\& -5u + 5v + 3w \le -10 \\& -2u + 2v - w \le -1 \\& w \le 3 \\& u \ge 0 \\& v \ge 0 \\& w \ge 0 \end{align*} $$
It should be noted that the objective value of the standard form is the negative of that of the example problem.
#OptimizationLast modified on 2023-03-22