MathJax Tips for Markdown (Hugo & Jupyter Notebook)

Hongtao Hao / 2023-03-02

Matrix #

`$$
A = \begin{bmatrix}
    1 & -1 & 0 & 0 \\
    0 & 0 & 1 & -1 \\
    -1 & 1 & 0 & 0 \\
    0 & 0 & -1 & 1
  \end{bmatrix}
  $$`

$$ A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} $$

`$$
x =
  \begin{bmatrix}
    x_1 \\ x_2 \\ x_3 \\ x_4
  \end{bmatrix}
$$`

$$ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} $$

Aligned equations #

`$$\begin{aligned} 
    a &
    = b \\ &
    = c \\ &
    = d \\ &
    = e
\end{aligned}$$`

$$\begin{aligned} a & = b \\ & = c \\ & = d \\ & = e \end{aligned}$$

Linear program #

`$$
\begin{align*}
\underset{x}{\text{maximize}}\qquad& cos(t)x_1 - cos(t)x_2 + sin(t)x_3 - sin(t)x_4\\
\text{subject to:}\qquad& x_1 - x_2 \le 1 \\ 
& x_3 - x_4  \le 1 \\
& x_2 - x_1  \le 1 \\
& x_4 - x_3  \le 1\\
& x_1, x_2, x_3, x_4 \ge 0
\end{align*}
$$`

$$ \begin{align*} \underset{x}{\text{maximize}}\qquad& cos(t)x_1 - cos(t)x_2 + sin(t)x_3 - sin(t)x_4\\ \text{subject to:}\qquad& x_1 - x_2 \le 1 \\ & x_3 - x_4 \le 1 \\ & x_2 - x_1 \le 1 \\ & x_4 - x_3 \le 1\\ & x_1, x_2, x_3, x_4 \ge 0 \end{align*} $$

#writing

Last modified on 2023-03-02