Matrix #
`$$
A = \begin{bmatrix}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{bmatrix}
$$`
$$ A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} $$
`$$
x =
\begin{bmatrix}
x_1 \\ x_2 \\ x_3 \\ x_4
\end{bmatrix}
$$`
$$ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} $$
Aligned equations #
`$$\begin{aligned}
a &
= b \\ &
= c \\ &
= d \\ &
= e
\end{aligned}$$`
$$\begin{aligned} a & = b \\ & = c \\ & = d \\ & = e \end{aligned}$$
Linear program #
`$$
\begin{align*}
\underset{x}{\text{maximize}}\qquad& cos(t)x_1 - cos(t)x_2 + sin(t)x_3 - sin(t)x_4\\
\text{subject to:}\qquad& x_1 - x_2 \le 1 \\
& x_3 - x_4 \le 1 \\
& x_2 - x_1 \le 1 \\
& x_4 - x_3 \le 1\\
& x_1, x_2, x_3, x_4 \ge 0
\end{align*}
$$`
$$ \begin{align*} \underset{x}{\text{maximize}}\qquad& cos(t)x_1 - cos(t)x_2 + sin(t)x_3 - sin(t)x_4\\ \text{subject to:}\qquad& x_1 - x_2 \le 1 \\ & x_3 - x_4 \le 1 \\ & x_2 - x_1 \le 1 \\ & x_4 - x_3 \le 1\\ & x_1, x_2, x_3, x_4 \ge 0 \end{align*} $$
Last modified on 2023-03-02