中餐馆过程

郝鸿涛 / 2024-11-27

定义 #

假设一家中餐馆有无限张桌子,标号为 1,2,3…。每张桌子容纳的人数没有限制。顾客依次进入餐馆,选择一张桌子坐下来:

假设:

那么,第 $N+1$ 位顾客选择桌子的概率为:

代码实现 #

import numpy as np 
import matplotlib.pyplot as plt 

def crp(n, alpha):
    tables = []

    for i in range(n):
        # the ith customer, also the total number of seated customers now
        if i == 0:
            tables.append(1)
        else:
            choices = np.arange(1, max(tables)+2)
            # np.bincount will start from table 0 till the max
            # we do not need table 0
            n_k = np.bincount(tables)[1:]
            probs = [c/(i+alpha) for c in n_k] + [alpha/(i+alpha)]
            choice = np.random.choice(choices, p = probs)
            tables.append(choice)
    return tables
Show Code

# Test different alphas
alphas = [0.5, 1.0, 2.0, 5.0]
num_customers = 100

# Create subplots
fig, axes = plt.subplots(2, 2, figsize=(15, 12))
axes = axes.ravel()

# Set random seed for reproducibility
np.random.seed(42)

for idx, alpha in enumerate(alphas):
    # Run simulation
    table_assignments = crp(num_customers, alpha)
    
    # Count customers per table
    table_counts = np.bincount(table_assignments)[1:]  # Skip index 0
    
    # Create histogram
    axes[idx].bar(range(1, len(table_counts) + 1), table_counts, alpha=0.8)

    # Set integer ticks on x-axis
    x_ticks = np.arange(1, len(table_counts) + 1)
    axes[idx].set_xticks(x_ticks)
    axes[idx].set_xticklabels(x_ticks.astype(int))
    
    # Add labels and title
    axes[idx].set_xlabel('Table Number', fontsize=12)
    axes[idx].set_ylabel('Number of Customers', fontsize=12)
    axes[idx].set_title(f'α = {alpha}\n(Number of Tables = {len(set(table_assignments))})', 
                        fontsize=14)
    
    # Add grid
    axes[idx].grid(axis='y', linestyle='--', alpha=0.7)
    
    # Add customer counts above bars
    for i, count in enumerate(table_counts):
        if count > 0:  # Only show non-zero counts
            axes[idx].text(i+1, count, str(count), ha='center', va='bottom')

plt.suptitle(rf'Effect of $\alpha$ (Number of Customers: {num_customers})', 
             fontsize=16, 
             y=1.02)
plt.tight_layout()
plt.show()

png

联合概率 #

假如有 10 名顾客,中餐馆过程的结果如下:

Show Code

import matplotlib.pyplot as plt
import numpy as np

# Create figure
fig, axes = plt.subplots(1, 3, figsize=(12, 4))

# Data for each circle
data = ["1,3,8", "2,5,9,10", "4,6,7"]

# Plot each circle
for i, ax in enumerate(axes):
    # Create circle
    circle = plt.Circle((0.5, 0.5), 0.3, fill=False)
    ax.add_artist(circle)
    
    # Add text above circle
    ax.text(0.5, 0.9, data[i], ha='center', va='center', fontsize = 16)
    
    # Set equal aspect ratio and limits
    ax.set_aspect('equal')
    ax.set_xlim(0, 1)
    ax.set_ylim(0, 1)
    
    # Remove axes
    ax.axis('off')

plt.tight_layout()
plt.show()

png 请问该结果的概率为多少?

$$ \begin{aligned} \Pr(z_1, \dots, z_{10}) &= \Pr(z_1) \Pr(z_2 \mid z_1) \dots \Pr(z_{10} \mid z_1, \dots, z_9) \\ &= \frac{\alpha}{\alpha} \frac{\alpha}{1+\alpha} \frac{1}{2+\alpha} \frac{\alpha}{3+\alpha} \frac{1}{4+\alpha} \frac{1}{5+\alpha} \frac{2}{6+\alpha} \frac{2}{7+\alpha} \frac{2}{8+\alpha} \frac{3}{9+\alpha} \end{aligned} $$

参考资料 #

#统计

最后一次修改于 2024-12-07